THESIS INFORMATION

INTRODUCTION

Thesis title:	SYNTHESIS AND	CHARACTERIZATI	ON OF THERMO-
	REVERSIBLE	SELF-HEALING	POLYURETHANE
	NETWORKS		
Major:	MATERIAL ENGI	NEERING	
Major code:	9520309		
PHD Student:	TRUONG THU THUY		
Training institute:	HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY		
	VIETNAM NATIONAL UNIVERSITY – HOCHIMINH CITY		
Scientific supervisors:	ASSOC. PROF. DR	. NGUYEN THI LE TI	HU

CONTENT

This thesis describes two main approaches to manufacture networks containing dynamic **Diels–Alder and (thio)urethane bonds and shape recovery ability**. Such materials were capable of **mild-temperature (\leq70 °C)**–triggered healing of scratches, complete cuts and deformation damages.

System 1 focuses on PUs containing dynamic DA entities engineered at the interface between the hard and soft domains. This concept of molecular design enables PUs to have great mechanical properties (Young's modulus \sim 80–225 MPa, ultimate tensile strength \sim 16–30 MPa, and toughness \sim 26–96 MJ m⁻³) and simultaneously remarkable healing ability at mild temperatures (60–70 °C) of macroscratches, punctures, and complete cuts.

To address the strict synthesis conditions of System 1, System 2 introduces a straightforward approach with dynamic Diels-Alder and thiourethane bonds dispersed in the PCL semicrystalline phase. The best obtained material showed high tensile strength (~36 MPa) and Young's modulus (~ 330 MPa) and good healing efficiency at mild temperature (complete healing of scratches and cuts and tensile strength recovery of 87% at 70 °C).

System 3 builds upon System 2 by blending the crosslinked poly(caprolactone-thiourethane) lattice with a linear P(4VP-SMA) copolymer. The mechanical recovery was 82% when adding 10 wt% of P(4VP-r-SMA) after 10 h at 70 °C, indicating an improvement of the healing time compared to the original system.

Scientific supervisors

PhD Student

Assoc. Prof. Dr. Nguyen Thi Le Thu

Truong Thu Thủy

S