THESIS INFORMATION

Title: Cu-BASED ORGANIC FRAMEWORKS AS CATALYSTS FOR C-C AND C-N COUPLING REACTIONS

Major:	Organic Chemical Technology
Major code:	62527505
PhD student:	Dang Huynh Giao
Advisors:	1. Prof. Dr. Phan Thanh Son Nam
	2. Dr. Le Thanh Dung
University:	University of Technology, Vietnam National University – Ho Chi Minh City

Contributions of this thesis

The overarching goal of this thesis is to use four Cu-MOFs as catalysts for direct C–C and C–N coupling reactions to synthesize propargylamines and quinoxalines. These compounds are found as the versatile intermediates for the synthesis of many nitrogen-containing biologically active compounds. Herein, the following are the main research contributions of this thesis.

- Cu₃(BTC)₂, Cu₂(BDC)₂(DABCO), Cu₂(BPDC)₂(BPY) and Cu(BDC) were synthesized successfully by solvothermal methods. These Cu-MOFs were characterized by characterized by PXRD, FT-IR, SEM, TEM, TGA, ICP-MS, H₂TPR and nitrogen physisorption measurements.
- It is first time to use these Cu-MOFs as heterogeneous catalysts for the reactions: i) the Cu₃(BTC)₂ was used as a heterogeneous catalyst for the direct oxidative C–C coupling reaction *via* C–H functionalization between *N*,*N*-dimethylanilines and terminal alkynes (reaction 1); ii) the Cu₂(BDC)₂(DABCO) was used as a heterogeneous catalyst for the direct C–C coupling reaction *via* C–H functionalization between *N*-methylanilines and terminal alkynes (reaction 2); iii) the Cu₂(BPDC)₂(BPY) could be used as a heterogeneous catalyst for the copper-catalyzed A³ reaction of tetrahydroisoquinoline, aldehydes, and alkynes (reaction 3); iv) the Cu(BDC) was employed as a heterogeneous catalyst for the oxidative cyclization reaction between α-hydroxyacetophenone and phenylenediamine derivatives (reaction 4).

- Cu₃(BTC)₂, Cu₂(BDC)₂(DABCO), Cu₂(BPDC)₂(BPY) and Cu(BDC) showed high catalytic activities for those C–C and C–N coupling reactions and the optimal conditions of the these reactions have been found.
- These Cu-MOFs can be reused and recycled several times without a significant degradation in catalytic activities. Fresh Cu-MOFs and reused Cu-MOFs were also compared by PXRD and FT-IR.
- All major products from the reaction 1, 2, 3, 4 were confirmed by ¹H NMR and ¹³C NMR. Besides, the isolated yields of those reactions were calculated.
- The most prominent point of this thesis the reaction of *N*-methylanilines and terminal alkynes (reaction 2). To the best of our knowledge, the reaction 2 has not been previously reported. Based on direct C–C coupling reactions, it is contributed to provide a new way to get propargylamines with the aldehyde-free from secondary amines and terminal alkynes. The mechanism of this reaction was also proposed.

Advisors

PhD student

Prof. Dr. Phan Thanh Son Nam Dr. Le Thanh Dung

Dang Huynh Giao