VIETNAM NATIONAL UNIVERSITY HCMC HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY Independence – Freedom - Happiness

THESIS INFORMATION

Title:	Effects of CeO ₂ , Nd ₂ O ₃ on the properties of lithium disilicate glass-ceramic
	for dental restorations
Major:	Materials Engineering
Major code:	62.52.03.09
PhD student:	Huynh Ngoc Minh
Scientific supervisor:	Assoc. Prof. Dr. Do Quang Minh
Institution:	Ho Chi Minh City University of Technology (HCMUT) - National University
	Ho Chi Minh City (VNU-HCM)

Abstract

The glass-ceramics (hereafter referred to as the GCs) are crystalline materials from glasses, produced by controlling the crystallization process through the heat-treatment of glasses with appropriate compositions. The GC with the crystals of lithium disilicate Li₂O.2SiO₂ (LS₂) as the main crystal phase is one of the prospective materials in the field of restorative dentistry due to the high bending strength and the ability to apply the hot pressed-ceramic technique. Rare elemental oxides are usually added in small amounts to the material, playing a role as colorants and fluorescent agents. *This thesis studied the various effects of CeO₂ content* (0 - 2 wt%), Nd_2O_3 content (0-1 wt%), on crystallization and properties of GC derived from Li₂O–K₂O–Al₂O₃–SiO₂–P₂O₅ system.

By using modern analysis techniques and specialized equipment, the crystallization mechanism, crystallization kinetics, and material structure change were studied. The final GC samples with characteristics: three-point bending strength 197 - 293 MPa> 100 MPa, chemical solubility, heat-shock resistance, radioactivity have suitability as "Monolithic ceramic for single-unit anterior or posterior prostheses adhesively cemented" (type II, class 2a) according to the classification of the standard "ISO 6872-2015 - Dentistry - Ceramic materials". The in-vitro evaluation for apatite-forming ability on the final GC in the simulated body fluid SBF showed the bioactivity of material.

Scientific contributions:

- Based on the analytical and experimental results, the crystallization mechanism and crystallization kinetics of the parent glass 17.04 Li₂O 3.12 K₂O 3.41 Al₂O₃ 74.05 SiO₂ 2.39 P₂O₅ with the addition of CeO₂, Nd₂O₃ for LS₂ dental glass-ceramic were studied. Thereby, the complex crystallization model of the studied glass system was clarified. The results facilitated the determination of heat-treatment conditions to produce glass-ceramic with desired properties.
- The thesis has contributed data on the use of two rare elemental oxides CeO₂ (0 2 wt%), Nd₂O₃ (0 1 wt%) with the role of enhancing and adjusting the aesthetic optical properties as well as the influence on crystallization and mechanical, physical, chemical, and thermal properties of lithium disilicate dental glass-ceramic materials. Since being heat-treated at the same conditions, the presence of CeO₂ or Nd₂O₃ tended to reduce the crystallinity and LS₂ crystalline phase forming of the ingots and final GCs. The color of CeO₂-containing samples shifted to yellow, Nd₂O₃ containing samples shifted to blue lilac (blue + red). The color difference and the fluorescence emission of Nd₂O₃ containing samples were higher than these of CeO₂ or Nd₂O₃ were decreased, the Vicker hardness was increased slightly. Nevertheless, The final GC containing 0.75% Nd₂O₃ had high crystallinity, the highest relative amount of LS₂ phase and the highest fluorescence emission.

Technical contributions:

- The process and fabrication parameters for manufacturing LS₂ dental GC materials with addition CeO₂ or Nd₂O₃ using the hot pressing forming technique have been determined.
- The physicochemical transformation models and material structure were clarified by applying suitable analytical methods (DTA, thermal microscopy, XRD, FTIR, XPS, SEM). Besides, the characteristic properties of the material were quantified by effective evaluation methods (translucency measured by two different methods, fluorescence, volumetric density, etc.) It is thereby possible to shorten the translation from research to application. In particular, the thermal microscopy analysis applying to study the deformation process of glass-ceramic ingots and determine the temperature range of hot pressing to shape the final glass-ceramic product has shown the effectiveness of this method. This has not been found in previous publications.

Scientific supervisor

PhD Student

PGS. TS. Đỗ Quang Minh

Huỳnh Ngọc Minh